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A NOTE ON C°
TIMOSHENKO BEAM ELEMENTS

J- EnrIQUE Luco®*

ABSTRACT

A simple analytical description of the problem of shear ‘locking’ of a
linear four-degree-of-freedom C° Timoshenko beam element is presen-
ted. The description of locking is based on comparison of the element
stiffness matrix with the corresponding matrix for a ‘standard’ non-

locking element and on comparison of the analytical solutions of the
discretized equations with the exact solution. It is shown that the problem
of locking can be avoided by use of reduced bending and shear rigidities.
The standard remedies for shear locking involving reduced integration
and higher order elements are also discussed and the relation between
different strategies to avoid ill-conditioning for extremely slender beams
1s examined.

INTRODUCTION

Timoshenko beam elements with C’-continuity, i.e. elements in which the
continuity of slope is not assured, have been used extensively to illustrate
the effects of ill-conditioning, locking and of selective reduced integra-
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tion (1, 2, 3, 4, 5). The typical finding is that, for certain types of C°
elements, the assembled model of the beam tends to ‘lock’, i.e. to become
extremely stiff, when the slendemess of the beam is increased while the
number of elements is kept fixed. The standard approach to meliorate
this situation has involved the use of selective reduced integration to
calculate the stiffness terms associated with shear deformation. Hughes et
al. (2) have presented a 4-degree-of-freedom reduced integration C°
element which exhibits excellent behavior over a wide range of the slen-
demess ratio. This element fails only when the slendemess ratio exceeds a
high value which depends on the word length of the particular computer
used. This problem is corrected in turn by dividing the shear stiffness by a
factor proportional to the square of the slendemess ratio of the element
(2), or, by introducing a reduced shear rigidity (6).

Fried (1) considered a 5-degree-of-freedom C" element for a beam and
found that the stiffness matrix became violently ill-conditioned as the depth
of the beam was reduced. He found that the ill-conditioning could be
removed if a fictitious beam depth proportional to the length of the
element was used to calculate the relative contribution of the shear energy.
He also suggested that an optimum value of the constant of proportionality
could be found by numerical experimentation. Fried (1973) argues that for
thin beams the discretization error is much larger than the shear correction
and does not warrant the use of the exact value for the depth of the beam.
He proposed instead the use of a fictitious depth such that the discretization
error and the shear correction are balanced.

The first objective of this note is to examine in an elementary and
unified fashion the problem of locking of C” beam elements as well as the
proposed remedies for this problem. A second objective is to study the
connection between the 4-degree-of-freedom reduced integration C°
clement considered by Hughes et al. (2) and the 5-degree-offreedom full
integration C° element studied by Fried (1). Both of these elements are
non-locking but suffer from ill-conditioning at high slendemess ratios. The
final objective is to examine the relation between the remedies for the
ill-conditioning proposed by Fried (1) and Hughes et al. (2) and the reduc-
tion of the shear rigidity advocated by MacNeal (6). The approach taken
here is based on comparing the element stiffness matrices for different C°
clements with a ‘standard’ stiffness matrix corresponding to the exact
force-displacement relation for a Timoshenko beam sujected to end loads.
Additional insight is obtained by comparison of analytical solutions fot the
deflection and rotation of cantilever Timoshenko beams discretized by
various types of C° element with the exact solution for the non-discretized
beam.
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BAsiC EQUATIONS

The element stiffness matrices considered here are derived from the
following expression for the strain energy in each element:
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where w(x) is the lateral displacement of the centerline, 8(x) is the rotation
of the cross-section, E is Young’s modulus, G is the shear modulus, k is the
shear correction factor, A is the area of the cross-section, I is the moment
of inertia of the cross-section with respect to the neutral axis, h is the
length of the element and x is the axial coordinate. The first term on the
rlght -hand side of Eq. (1) is, of course, the bending energy and the second
is the shear energy. [t is convenient to introduce the normalized variables
¢ = x/h and @ = h@. With these substitutions, the strain energy can be
written in the form

41 EI '/ dé 2 2 dw 2..
e {8 ]

where

_[ xGAR? 1" K h @)
Ve"[ 6 EI TVTITFY (VIR

in which r = VI'is the radius of gyration of the cross-section. The relation E = 2
a1+v)G wheréV is Poisson’s ratio, has been used in Eq. (3). The parameter Y.
represents a normalized slendemess ratio of the element. For a rectangular
cross-section of depth t, r =t/ \/ﬁ',and this parameter takes the value ve =
h/tifx=1andv=0.

Egs. (1) and (2) suggest that the element stiffness matrix [k.] can be
written in the form : -

[ke] = (—Eé) (ko] + [ks]) - | (4)

where [k,] and [k,] are normalized stiffness matrices associated with
bending and shear deformations, respectively.
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As a reference for later comparisons, we consider an element obtai-
ned by use of shape functions corresponding to the exact solution for a
Timoshenko beam segment of lenght h subjected to end forces and
moments. The éxact solutions for the lateral deflection and normalized
rotation are given by

A+A D whg) = (1 =5 (1 +£- 2+ 27*) wi + &1 - )
(1-&+7:2) B) + E(3E - 267+ 21.%) wy-E(1-8) € +%2) By " (52)

(1 +2y5%) 6 (hg) = = 6&(1 — Hwy + (1 — & (1 — 3¢ + 2.8,
+ 6L (1~ Ewa T E (-2 + 36+ 2v:7) 6, ~ (5b)

where wy, wy are the end deflections and 61, étz the normalized end rotations.
Substitution from Egs. (5a) and (5b) into Eq. (2) leads to

6 3 6 3
(ky] = 2 3 21+ +1") -3 (1 -2y77 -2179 (6)
(1 + 2v:2)?
~6 -3 6 -3
3 (1 =2y = 2v") =3 201 + 4% +40")
6 3 -6 3
k] = 422 3 32 -3 372 -
sl = = T T o —9.9
A+2y3 | 6 3 4 3
3 32 -3 3,2

in which the degrees-of-freedom are ordered in the form wy, 8,, we and
05. The total element stiffness matrix is given by

. 6 3 -6 3
N 2 El 3 2+ -3 (1 +v:?)
kel = ——— [—— 8
a+ov:22 e | -6 -3 6 -3 |®
3 (I-v" -3 @2+?)

As . tends infinity, the matrices [k.] and (EI/h?)[ky] tend to the ‘siandard’
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stiffness matrix for a Bernoulli beam and the matrix [k,] tends to zero. It
should be noted that the rank of the matrix [k] is one. In what follows, the
matrices [Kp), [k;] and [k.] are referred to as the ‘standard’ bending, shear
and total stiffness matrices for a Timoshenko beam element.

For future reference, we also note that the deflection and rotation of a
uniform cantilever Timoshenko beam fixed at the end x = 0 and subjec-
ted to a force P at the end x = I are given by

W(x)zﬂg_ Lﬁ.f-_?l -X (X 2+ 1 X (9a)
3EI I 2 1 1 2v% 1

T ) 1o

L kear 14 _4[
6El 1+v

is a normalized slenderness ratio for the full beam. Finally, the end
displacement and rotation are given by

3
W(1)=(;El) 1+ 2112 )=A(v) (11a)

_ [P
o1 = (ﬁ ) (11b)

where A(x) = (PI*/3El) corresponds to the end displacement for the
Bemoulli beam.

" A C° LOCKING ELEMENT

As an example of a locking C’-element, we consider, after Hughes et al.
(2), a 4-degree-of-freedom element in which the lateral displacement and
rotation are described by the linear shape functions

wiE) = (1= §) wi + & w (122)
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6 =(1-86,+¢£6, (12b)

and in which the stlffness matrices are calculated by exact mtegrauon of
the strain energy Substitution from Eqgs. (12a) and (12b) into Eq. (2),
followed by exact integration, leads to

0 o o0 0
0 1 0 —g
[k'y] = 0. 0 0 .0l (13)
0 -1 0. 1 ' |
and ’ IERLE
. . 3 -6 3
. . 3 2 -3 1
[k =2 6 -3 .. 6 -3. 1 (14)
Y ) ) 3

in which the degrees-of-freedom are agaln ordered in the form wy, 8, wg,
8,. Itis apparent that the rank of [k’,] is one while that of [k’,] is two. The
total stiffness matrix for the element is, in this case,

;

. 66 3 -6 , 3
3 2+7vH -3 1-vH
m]—%fﬂ a (15)
- -3 6 -3

3 (1-vH -3 2+vd

Inspection of Eq. (15) reveals that, as y. — =, the matrix [k.] is pro-
portional to the stiffness matrix for the ‘standard’ beam element for a
Bernoulli beam and that the factor of proportionality is (v2/2). For a
beam modelled by a number of equal elements, the deflection for the C°
model, in the limit as v, — 2, will be equal to that for the Bernoulli beam
multiplied by (2/y2), and, consequently, will be much smaller than the
solution. for the Bernoulli beam.

A more detailed description of the locking effect can be obtained by
noting that the stiffness matrix [ke] for the C” -element given by Eq. (15) is
exactly proportional to the stiffness matrix [ke] given by Eq. (8) for the
standard Timoshenko beam element. The factor of proportionaly is 1
+ (ye /2). Consider now a uniform cantilever beam fixed at x = 0 and
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subjected to an end load P at x = 1. Let the beam be discretized into N
equal elements of length h (1 = Nh). In this case, the ‘standard’ element.
characterized by Eqs.r (5a), (5b) and (8) leads to the exact s6lutién. On the
basis of the propomonahty of the stiffness matrices’ [kd and [K:], it follows
that the nodal deflection w’ (x) and nodal rotation 6" (x) (x =nh,n =0, N)
obtained by use of the C° -element are

. Vi
1

1+(y%/2) 8(x), (x=nhn=0N)  (16)

w(x) = w(x),8'(x) =

_1_
+(12/2)
where w(x) émd-(-)(x) are the exact displacement and rotation given by Eqs.

(9a) and (9b). In particular, if A’(y,N) = w'(1) denotes the end deflec-

tion for the C°-element and A(y) and A(®) = lﬁ‘[ denote the exact de-
flections for the Timoshenko and Bernoulli beams, respectively, then

A(y, Ny l _ I (17)
A('Y) 2 2 o
1 + ( Ye ) 1+ ( Y )
.2 . 9N?
1+ ( 212 )
san o
1+ ( ? )
2N?

where y = Nv,. Egs. (17) and (18) show that if N is kept fixed, then
A'(y,N)/A(y) and A'(y,N)/A(=) tend to zero as vy tends to infinity. This
locking behaviour is ullustrated in Fig. 1 where the ratio A’(y,N)/A(y) is
shown versus v for different values of N. A comparison of results based
on Eq. (17) with numerical results obtained by Hughes etal. (2)is presen-
ted in the Appendix. '

Eq. (17) indicates that the deflection for the C®-element will approxi-
mate the exact solution of the Timoshenko beam only if the parameter
Y. = v N is kept small. The results in Table l.indicate that thelength h of
the element would have to be less than one quarter of the height of abeam
of rectangular cross-section (r = V12w = 1/3x = 5/6)-and +y. should be
less than 0.20 for the error: to be less than 2:percent.This requirement
implies an intolerably large riumber of elements for slender beams (N =5
v for 2 percent error). .
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Fig. 1. Tip deflection of cantilever beam modelled by N equal four-degree-of-freedom full
integration elements plotted versus the normalized slenderness ratio of the beam v. The tip
deflection is normalized by the exact result for a Timoshenko beam.

TasLE 1
vALUES OF A'(yN)/A(Y) AND vy, VERsSUS h/t FOR A BEAM
WITH RECTANGULAR CROSS-SECTION

r=t/N12'v=1/3,x=5/6

(hft) 1,0 0,5 0,25 0,125
Ye 0,791 0,395 0,198 0,099
A'(yNYA®Y) 0,762 0,928 0,981 0,995
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From Eq. (18) it is found that the end deflection for the C’-element is
equal to the exact Bernoulli result if N = y% If an error m with respect to
the Bernoulli resultis considered admissible then the required number of
elements is N ~ vV (1 — m)/2n for v large. Thus, for slender beams, a
large number of elements is also requerired to match the Bernoulli result.

The locking of the linear 4-degree-of-freedom C”-element just consi-
dered can be eliminated by use of a higher order element (1) or by use of
selective reduced integration (2) as discussed in the following section. A
simple alternative remedy, which apparently has not been considered in
the past, consists of taking advantage of the proportionality of the stiff-
ness matrix [k¢] for the linear C®-element and the stiffness matrix [k.] for
the ‘standard’ Timoshenko beam element. If the bending EI and shear
kGA rigidities of the C’-element are replaced by the effective values

(Elyy = —EL__ (19)

Ye .
1+
2
and

(KGA)r = —<CA_ (20)

¥
1+ 5

then, the normalized element aspect ratio (y.)i = (kGAh?/6El); = y2
remains unchanged and the stiffness matrix [k.] for the modified C°-
element [Eq. (15)] becomes identical to the stiffness matrix [k.] for the
standard Tismoshenko beam element [Eq. (8)]. Since both EI and kGA
are affected by the same factor the suggested modification entails only the
division of the total element stiffness matrix by

2
A
(1+_L2)

The resulting modified C®-element leads to exact nodal solutions for
loads applied to the nodes. In particular, for the cantilever beam subjec-
ted to an end load P considered as example, an exact nodal solution is
obtained independently of the number of elements used. In the limiting
case of y. — =, then

2 ( EI EI
)

and the matrix [k’.] tends to the standard form for the Bernoulli beam.
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NON-LOCKING CP-ELEMENTS

Following Hughes et al. (2) we consider a 4-degrec-of-freedom C'-ele-
ment in which the lateral displacements and rotations are given by indepen-
dentlinear shape functions asin Egs. (12a) and (12b).In this case, the strain
energy is calculated by one-point Gaussian quadratire leading to

[k, = (K] 21)

3 3/2 -3 3/2

kel = ve (29)
’ -6 -3 6 -3
N A 3 32 -3 312
\ N G i O v
, S rt6 3 -6 3
( K (%+v;2)—3 (%—722)
(k"] = ( El )
W) |
-6 -3 6 -3 (23)

where the degrees—of -freédom are w1, 61, wo and 92 The matrix [k,”] is of
rank one and it is, proporuonal to the matrix [k;] given by Eq. (7) for the
‘standard’ Timoshenko beam element. It must be noted however that [k}
tends to zero as Y, — oo while [k,"] tends to infinity. Another observation is
that the total element stiffness matrix [k.”] is not proportional to the
stiffness matrix for the ‘standard’ Timoshenko beam element nor tends to
the ‘standard’ stiffness matrix for a Bernoulli beam as . — oo.

Additional: insight into the: characteristics of the four-degree-of-
freedom reduced integration element can be obtained by considering the
analytical solution for the deflection of a uniform cantilever Timoshenko
beam of lenght | discretized into N finite elements of equal length h (1 =
Nh). Treating the global equilibrium equation as a difference equation
with appropriate end conditions leads to the solution

) )

] e s 1 -

2

w2 7))

N |-
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Bl e

for x =nh {n = O,N). The rotation coincides with the exact solution given
by Eq. (9b) and the lateral displacement differs from the exact solution
[Eq. (92)] only by the term - PI3/3EI) (x/1) (1/2N)? which tends to zero as
N — . The ratio of the tip deflection A” (7, N) = w” (1) to the exact tip
deflection for a Timoshenko beam is given by

lr .
L oan ’QN) ‘
AN, ( (25)
A(y) |+ 1
2y’

The values for this ratio for Yz =10and N=1, 2,4, 8 and 16 are 0.762,
0.940, 0.985, 0.996 and 0.999, respectively. The corresponding values for '
=10° are 0.750, 0.938, 0.984, 0.996 and 0.999. All of these values coincide
exactly with the numerical results presented by Hughes et al. (2).

The test computations conducted by Hughes et al. (2) for a cantilever
beam and Eqs. (24a) and (24b) show that the reduced integration element
leads to excellent results over a wide range of values of the beam slenderness
Y. The numerical solution only deteriorates when the aspect ratio of the
element h/t exceeds a critical value (h/t) which depends on the computer
word length. In the work of Hughes et al. (2) this critical aspect ratio was
10*/16. To eliminate this difficulty, these authors propose to multiply the
shear stiffness by (h/t)2./(h/t)2 when (h/t) > (h/t).. This modification is
equivalent to replacing Ye iz Eq. (23) by ve =V x/(1 +V)'(h/t)c if Ye > Y.

Prior to the work of Hughes ¢i al. (2), Fried (1) had considered a
5-degree-of-freedom element characterized by the shape functions -

w(hE) = (2682 — 3£ + 1) wy + (262 — Ewy + 4(E — ED)ws (26a)
O(he) = (1 — & 8, + &6, (26b)

where w1, §1,:wz 82 are the end displacements and rotations and ws is the
lateral displacement at the center of the element. The resulting bending
and shear stiffness. matrices obtained by exact integration of the strain
energy are
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0 0 0 0 OW
0 1 0 0o -1
"= 7
k"] 0 0 0 0 0 @7
0 0 0 0 0
0 -1 0 0 1

14 5-16 2 1

o, 5 9 -4 -1 1
"=% | _16 -4 32-16 4
2 -1 -16 14 -5

1 1 4 -5 2

for the five degrees-of-freedom wy, 8, ws, we and 8,. The interior
degree-of-freedom w; can be eliminated by static condensation. From the
3" row of Eqs. (27) and (28) it is found that the interior equilibrium
condition is

~ ~

w) + wo 0, — 0,
2 8

which, in the light of Eqs. (26a) and (26b), implies thatd{dw/dx-0)/dx = 0.
The interesting result is that once the internal degree-of-freedom wy is
eleminated by use of Eq. (29) the resulting 4 X 4 condensed matrices [k;, ]
and [k”’] are indentical to the corresponding matrices [ky,”] and [k,”] for
the 4degree-of-freedom reduced integration element considered by Hug-
hes et al. (2). Thus, the 4-degree-offreedom reduced integration element of
Hughes et al. (2) is equivalent to the five-degree-of freedom full integration
element of Fried (1).

Wg =

(29)

Fried (1) found that for a sufficiently large element slenderness ratio
the global stiffness matrix becomes ill-conditioned and numerical diffi-
culties are encountered. In particular, for a rectangular cantilever beam
of depth t, Fried found that the limiting elemento slenderness ratio h/t for
the casek = 1, v =01is

(s—1)/2
h - 10 (30)
t N1.85

where s is the number of decimals in the particular computer used. To
eliminate this problem, Fried (1) proposes to use a fictitious value for the
thickness tg = h/c, or, equivalently, a fictitious value for the element
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slenderness ratio (ye)y = c so that the discretization error and the shear
correction are balanced. By numerical experimentation he found that the
value (y)p = c = \/gleads, in the case of a cantilever beam, to the exact tip
deflection for a Bernoulli beam. This result is much more general than
the case considered by Fried (1). Indeed, substitution of yZ = 2 into Eq.
(23) shows, that, for this value of vy, the matrix [k."] becomes identical to
the ‘standard’ stiffness matrix for a Bernoulli beam and, consequently,
the solution for the generalized nodal displacements will coincide with the
exact solution for the Bernoulli beam for any combination of loads
applied at the nodes. If ¥ in Eq. (24a) is replaced by y§ = 2N?, which
corresponds to (Y.)s = \/g_,' then the last two terms in Eq. (24a) cancel each
other and the nodal results coincide with the exact solution for the
Bernoulli beam. This result reveals that the success of the residual energy
balancing of Fried (1, 7) stems from the fact that the discretization error
and the shear correction act in opposite directions and that when these
terms are balanced the exact shearless solution is obtained. Without the
sign difference, balancing terms would only double the error.

Clearly, the corrections for the ill-conditioning problem proposed by
Fried (1) and Hughes et al. (2) are equivalent to the use of a fictitious value
for the element slenderness ratio .. The corrections differ in that Fried
(1) would use a value of y. = V2while Hughes et al. (2) would use a much
larger value y. = Vx/(1 + v) (h/t),.

The linear 4-degree-of-freedom C°-element with reduced integra-
tion considered by Hughes et a/. (2) has been also discussed by MacNeal (6)
who found, by comparison of the strain energy for this element with that
for a cubic displacement function, that the element behaviour can be
improved by replacing the shear rigidity («GA) by an effective value
(kGA) defined by

1 1 h?

«GA), ~ ®GA ' 121 3D

where the second term on the right-hand-side is called the residual
bending flexibility. This same result can be obtained in a slightly different
way by comparison of the element stiffness matrix [k."] given by Eq. (23)
with the stiffness matrix [ke] for the ‘standard’ Timoshenko beam ele-
ment given by Eq. (8). The two matrices will be equal if y. in Eq. (23) is
replaced by (yo)r = V(kGA)y hZ /6ET'in such a way that

Yo _ 2
1+ (v%2) I+ 2y72

(‘Ye)?l‘ = (323)
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3
5 t (T =2+t (32b)

- (Y12 =1- .72 (32¢)

rojwe

while the flexural rigidity. EI is left unchanged. It is easy to verify that
Eqs. (32b) and (32c) are satisfied if (y.) is defined by Eq. (32a) which is
equivalent to Eq. (31).

Thus, if the shear rigidity is modified according to Eq. (31), or,
equivalently, if the element slenderness ratio +y. is replaced by (ye)t given
by Eq. (32a) while the flexural rigidity El is kept unchanged, then, the
four-degree-of-freedom reduced-integration C°-element leads to exactly
the same total stiffness matrix as the ‘standard’ Timoshenko beam ele-
ment. With this modification, the element gives exact nodal deflections
and rotations for forces and moments acting at the nodes. When full-
integration is used the same results can be obtained by modifying both the
flexural and shear rigidities.

'If Y. = oo then Eq. (32a) leads to (Ye)T = (Ye)B = v 2Which corresponds
to the optimal modification proposed by Fried (1). Finally, Eq. (32a) implies
that ((y1)%- 2N?)! = ()2 where y1 = N(¥e)1. Substitution of ¥ by yr in Eq.
(24a) and use of this relation confirms that the modified element leads to
the exact nodal solution for a Timoshenko beam.

CONCLUSIONS

A simple analytical description of the problem of locking of a linear
four-degree-of-freedom C° Timoshenko beam element has been presen-
ted. It has been shown that the total stiffness matrix of the element is
proportional to the stiffness matrix for the ‘standard’ non-locking Timo-
shenko beam element and that the factor of proportionality tends to
infinity as the aspect ratio of the element tends to infinity. The nodal
deflection and rotation of a beam discretized by a number of equal
C*-elements are then exactly proportional to the solution based on ‘stan-
dard’ elements. The factor of proportionality tends to zero as the aspect
ratio of the element increases and hence locking results. This simple
description of the problem of locking also suggests a new and simple way
of avoiding the problem, namely, to scale the bending and shear rigidities
by a common factor selected so that the factor of proportionality is equal
to one. An impractical alternative would be to use elements with length
shorter than the radius of gyration of the cross-section.
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The traditional remedy for locking has been the use of selective
reduced integration coupled with a scaling of the shear strain energy (2)
or with the use of a modified shear rigidity (6). It has been shown that for
the simple linear four-degree-of-freedom C°-element considered by
Hughes et al. (2), the combination of reduced integration and modifica-
tion of the shear rigidity as proposed by MacNeal (6) leads to an element
stiffness matrix which is identical to that for the nonlocking ‘standard’
Timoshenko beam element. The resulting nodal displacement and rota-
tions are then exact for loads applied to the nodes. Reduced integration
combined with reduction of the shear rigidity leads to the same result as
full integration combined with reduction of both the bending and shear
rigidities.

It has also been shown that the five-degree-of-freedom C°-element
considered by Fried (1) involving a quadratic displacement, a linear
rotation of the cross-section and full integration, leads, after static con-
densation of the internal degree of freedom, to the same stiffness matrix
as that for the four degree-of-freedom reduced integration C°-element
considered by Hughes et al. (2). The equilibrium condition at the internal
node corresponds to a condition of constant shear strain along the ele-
ment. The equivalence of these two elements gives some insight into the
effect of reduced integration which eliminates the contribution of a
linearly varying component of the shear strain. The equivalence also
shows that the ill-conditioning studied by Fried (1) also affects the ele-
ment considered by Hughes et al. (2). The remedies proposed by Fried
(1), who uses a fictituous depth for the beam proportional to the length of
the element, and Hughes et al. (2), who divided the shear strain energy by
a factor proportional to the square of the element slenderness ratio, are
similar in that they are equivalent to the use of a fictitious element
slenderness ratio but differ on the value for this ratio. Fried (1) suggests
the use of a relatively small value (y.)g = V2'for which the element
stiffness matrix becomes indentical to that for the ‘standard’ Bernoulli
beam element. Hughes et al. (2), on the other hand, recommend a large
value corresponding to the largest value of vy, for which accurate numeri-
cal results are obtained. The modification of the shear rigidity proposed
by MacNeal (6), which includes, as a limiting case, the correction propo-
sed by Fried (2), appears to be the best solution to the ill-conditioning
problem.

Analytical solutions for a cantilever Timoshenko beam subjected to
an end load and discretized into N equal linear C°-elements for both full
and reduced integration have been obtained. These solutions give simple
descriptions of the effects of locking and reduced integration and show
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that the energy balancing approach suggested by Fried (1) works as a
result of the shear correction cancelling the error due to the discretiza-
tion. Comparisons of the results from the analytical solutions with nume-
rical results quoted extensively in the literature have uncovered a number
of minor and major errors.

APPENDIX
ON THE PROPAGATION OF ERRORS

Initial comparisons of published numerical results with the exact solution
obtained here [Eq. (17)] for the normalized response of a discretized
cantilever Timoshenko beam proved unsuccessful. The search for the
source of the discrepancies led to the discovery of a proliferation of minor
and more serious errors as the initial numerical results of Hughes et al. (2)
were reported in subsequent papers and texts.

The chain starts with the work of Hughes et al. (2) who considered the
case of a uniform rectangular cantilever beam subjected to an end load
and characterized by E = 1000,G = 375 (v = 1/3),depth T = |, withb =1,
lenght | = 4 and k = 5/6. For this ‘deep’ beam y* = [(5/6) (4/3)]* (4)* = 10.
To test the Bernoulli-Euler limit, Hughes et al. (2) also considered the
same beam but with G increased to 375 x 10°. This ‘thin’ beam is
characterized by y* = 10°. The numerical results obtained by Hughes et
al. (2) for the tip displacement normalized by the exact solution for the
Timoshenko beam are compared in Table A. I with the corresponding

TabLE AL
COMPARISON OF NUMERICAL RESULTS OBTAINED BY
HUGHES el al. (1977) FOR THE NORMALIZED TIP
DISPLACEMENT OF CANTILEVER BEAMS WITH THE ANALYTICAL
SOLUTIONS OF THE DISCRETIZED EQUATIONS FOR FULL
AND REDUCED INTEGRATION

Reduced Integration Full Integracion

Hughes et al. (1977) Hughes et al. (1977) Present Study

and present study
N 42=10 +«2=10° ¥2 =10 v2 = 108 ¥=10 +%=10°
1 0,762 0,750 0,0416* 0,200 x 107** 0,167 0,200 x 107°
2 0,940 0,938 0,445 0,800 x 10 ** 0,444 0,800 x 1073
4 0,985 0,984 0,762 0,320 x 1073+ 0,762 0,320 x 107*
8 0,996 0,996 0,927 0,128 x 10~ 0,928 0,128 x 1078
16 0,999 0,999 0,981 0,512 x 1073 0,981 0,512 x 1072
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analytical results given by Eq. (17) for full integration and Eq (25) for
reduced integration. The numerical results obtained by Hughes et al. (2)
for the case of reduced integration coincide exactly with the results from
Eq. (25). For full integration, some of the numerical results obtained by
Hughes et al. (2) differ from those based on Eq. (17) and appear to be in
error. In particular, the numerical results for y* = 10°and N = 1, 2, 4,
appear to suffer from a tipographical error in the exponents. Hand
calculation for the case N = I, y% = 10 confirms that the result listed by
Hughes et al. (2) is in error.

In a subsequent paper, Malkus and Hughes (4) use the same numerical
results listed by Hughes et al (2) but attribute these results to beams
characterized buy 1 =4,b=1,x =1, t=0.79 (deep t beam) and t =2.5 x 10
(thin beam). The values listed for the depth t of the beams are in error. The
correct values of the depth t required to match the values of ¥* = 10 and yz
= 10° for the deep and thin beams are t = 4/V10'= 1.2649 and t = 4 x 10°,
respectively.

Zienkiewicz (3) in his text (Table 11.1, p. 291) reproduces the results
obtained by Hughes et al. (2) but introduces two additional missprints.
The result for the deep beam, N = 1 and reduced integration is listed as’
0.752 instead of the correct value of 0.762. Also the result for the thin
beam, N = 2 and full integration is listed as 0.3 x 10™", while the result
given by Hughes et al. (2) is 0.8 X 10~ " and the correct value is 0.8 X 107°.
In addition, Zienkiewicz (3) introduces the non-dimensional parameter

A
2
N
1R

(A.1)

and atributes the results for the deep and thin beams to valuesof o’ = 7.2
x 10°, res pectively. These value for a’ are in error. Th_e correct values for
the deep and thin beams are o’ = 5 and ' = 5 X 107, respectively. The
error appears to stem from the use of k = 6/5 instead of the correct value k
= 5/6.

Hinton and Owen (5) in their text also use the results of Hughes et al.
(2) to illustrate the ‘locking’ effects. In Fig. 5.9 (p. 145) they reproduce
some of the results shown in Fig. 6.16 of Hughes et al. (2) and claim in the
caption that the results demonstrate the locking effect for a Timoshenko
beam modelled with 16 elements and full integration. In reality, the
results correspond to a demonstration by Hughes et al. (2) of the ill-
conditioning effects stemming from the vanishing of the bending stiff-
ness as a result of the finite computer word length when reduced integra-
tion is used. In Fig. 5.10 (p. 146) (5) also reproduce results shown in Fig.
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6.16 of Hughes et al. (2) and claim that it describes results without locking
obtained for a Timoshenko beam modelled with 16 elements and reduced
integration. In reality, the results correspond to a modification of the
reduced integration approach proposed by Hughes et al (2) to eliminate
ill-conditioning when the element slenderness ratio becomes extremely
large.

The normalized tip displacements presented in Fig. 6.16 of Hughes e
al.(2) for a cantilever beam discretized into 16 equal 4-degree-of-freedom
reduced integration elements are larger than 1.0 for values of I/t smaller
than 20. This suggests that these results are normalized by the exact
displacement for a Bernoulli beam rather than by the exact displacement
for a Tismoshenko beam as done elsewhere in the paper. The numerical
results shown also appear to imply that values of k = 1 and v = 0 were used
which are different from the values used elsewhere in the paper. The
pointin Fig. 6.16 of Hughes et al (2) corresponding to I/t = 4 appears to be
missploted.

Finally, Fried (1) reports that the relative error (with respect to the
result for a Bernoulli beam) of the tip deflection of a cantilever beam of
length 1 modelled by equal elements of length h is given by 0,4 (h/1)%. The
beam is characterized by y=0, x = 1, t = h, b = 1 and the five-degree-of-free-
dom C° -elements obtained by full integration, which are equivalent to the
four-degree-of-freedom reduced- integration elements considered by Hu-
ghes et al. (2), are used. In this case, ye = 1 and ¥ = 1/h = N. Eq. (29a)
indicates that the relaUve error with respect to the result for the Bernoulli
beam is, in this case, [y - (2N )_‘]/2 0.25 (h/l) which differs from the
numerical result reported by Fried (1).
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